New Treatments for Neuroendocrine Cancers

George Fisher, MD, PhD
Professor of Medicine
Stanford University School of Medicine

Disclosures

- Contracted research support from:
 - Genentech, Bristol-Myers Squibb, Ipsen, Eli Lilly, Polaris, X-Biotech, and New Link
- Fees for non-CME services:
 Pharmaceutical Research Associates
- Stock ownership: Seattle Genetics (spouse)
Topics

- NET 101: the basics
- Biological “targets”
 - Somatostatin receptors
 - mTOR
 - Angiogenesis
- Chemotherapy
- Liver directed options
“Rare-omas”

- Incidence is low
 # diagnosed per year per 100,000 people

<table>
<thead>
<tr>
<th>Site</th>
<th>Incidence (per 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>1.35</td>
</tr>
<tr>
<td>Thymus</td>
<td>0.02</td>
</tr>
<tr>
<td>Stomach</td>
<td>0.30</td>
</tr>
<tr>
<td>Small intestine</td>
<td>0.86</td>
</tr>
<tr>
<td>Colon</td>
<td>0.36</td>
</tr>
<tr>
<td>Appendix</td>
<td>0.15</td>
</tr>
<tr>
<td>Rectum</td>
<td>0.86</td>
</tr>
<tr>
<td>Pancreas</td>
<td>0.32</td>
</tr>
<tr>
<td>Liver</td>
<td>0.04</td>
</tr>
<tr>
<td>Other / unknown</td>
<td>0.74</td>
</tr>
<tr>
<td>Total</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Increasing Incidence

Yao et al JCO ‘08
Increasing Incidence

Yao et al JCO ‘08

Octreotide Approved

Not really that rare…

More Prevalent Than Stomach and Pancreatic Cancer Combined 1,2
Imaging Issues with NETs

- Non-contrast scan
- Arterial phase scan
- Venous phase scan

NET Path: Grading System

<table>
<thead>
<tr>
<th>NET (ENETS, WHO)</th>
<th>Grade</th>
<th>Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td><2 mitoses/10hpf AND <3% Ki67 index</td>
<td>Low grade</td>
<td>Well-differentiated</td>
</tr>
<tr>
<td>2-20 mitoses/10hpf OR 3-20% Ki67 index</td>
<td>Intermediate grade</td>
<td></td>
</tr>
<tr>
<td>>20 mitoses/10hpf OR >20% Ki67 index</td>
<td>High grade</td>
<td>Poorly-differentiated</td>
</tr>
</tbody>
</table>

NET Biology

- 5 somatostatin receptors (SSTR_{1-5})
- 80% NETs over-express SSTR_2, followed by SSTR_1 and SSTR_5
- Octreotide has high affinity for SSTR_2

Radiolabelled somatostatin: imaging
Radiolabelled somatostatin: imaging

Octreoscan image

Radiolabelled somatostatin: imaging

\(^{111}\text{In-octreotide Octreoscan}\)

\(^{68}\text{Ga-DOTATATE PET}\)
Targeting the Somatostatin Receptors

<table>
<thead>
<tr>
<th>Function</th>
<th>SST₁</th>
<th>SST₂</th>
<th>SST₃</th>
<th>SST₄</th>
<th>SST₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antisecretory</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Anti-angiogenic</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Antiproliferative/Inhibition of cell cycle</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Induction of apoptosis</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

Adapted from Susini C, Buscail L and Weckbecker G, Lewis I, Albert R, et al.¹

Somatostatin Analogs: Octreotide

PROMID STUDY IN MIDGUT CARCINOID

85 patients with well-differentiated metastatic midgut NETs

Randomize

Octreotide LAR 30 mg IM q4wks N=42
Placebo IM q4wks N=43

Primary Endpoint
- Time to Progression

Secondary Endpoints
- Overall Survival
- Response Rates

Time to Progression

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Octreotide</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proportion without high risk events</td>
<td>0.50</td>
<td>0.44</td>
</tr>
</tbody>
</table>

p=0.000072, HR 0.34 (95% CI 0.20-0.59)

Overall Survival

<table>
<thead>
<tr>
<th>Time (months)</th>
<th>Octreotide</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median OS not yet reached</td>
<td>97.4 months (not reached)</td>
<td>76.7 months</td>
</tr>
</tbody>
</table>

Arnold, GI ASCO 2009, abstract #121.
Somatostatin Analogs: Lanreotide

CLARINET STUDY IN GEP-NETS (MIDGUT + PANCREATIC NETS)

Primary endpoint: Progression Free Survival (n=204)

- Lanreotide Autogel vs. placebo
 - p=0.0002
 - HR=0.47 [95% CI: 0.30, 0.73]

Peptide Receptor Radionuclide Therapy

- **Retrospective Analysis**
 - Key Inclusion: Octreoscan positive, Karnofsky performance status >50%
 - 504 patients (1772 total treatments) → 310 patients available for analysis

- **Results**
 - Median Overall Survival = 46 months; Median Progression-free Survival = 33 months
 - Toxicities: Mostly acute and subacute (nausea, vomiting, abdominal pain, hair loss); rare serious delayed (renal insufficiency, liver toxicity, myelodysplastic syndrome)

Responses 3 Months After Last Administration of 177Lu-Octreotate (n=310)

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>Response n (%)</th>
<th>Minor Response n (%)</th>
<th>Stable n (%)</th>
<th>Progressive n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcinoid</td>
<td>42 (23)</td>
<td>31 (17)</td>
<td>78 (42)</td>
<td>37 (20)</td>
</tr>
<tr>
<td>Pancreas NET</td>
<td>30 (42%)</td>
<td>13 (18%)</td>
<td>19 (26%)</td>
<td>10 (14%)</td>
</tr>
<tr>
<td>Other</td>
<td>19 (38%)</td>
<td>7 (14%)</td>
<td>10 (20%)</td>
<td>14 (28%)</td>
</tr>
<tr>
<td>Total</td>
<td>86 (28)</td>
<td>51 (16)</td>
<td>107 (35)</td>
<td>61 (20)</td>
</tr>
</tbody>
</table>

Kwekkeboom, JCO, 2008; 2124.
Current Trial: PRRT with $^{177}\text{Lu-DOTA}$
Phase III: NETTER-1 Trial

1° endpoint PFS

Advanced, progressive, somatostatin receptor positive, midgut carcinoid tumours

$^{177}\text{Lu-DOTA}^0\text{-Tyr}^3\text{-Octreotate}$ + Octreotide LAR

Octreotide LAR 60 mg

Sponsor: Advanced Accelerator Applications, France

Future Attempts at Targeting SSTR:

- $^{177}\text{Lu-DOTA-JR11}$: SSTR2 antagonist
 -- Wolfgang Weber @ Memorial Sloan Kettering

- Nanoparticle delivery targeting SSTR2
 -- Herb Chen @ University of Wisconsin

- Adeno-associated viral construct targeting SSTR2
 -- Renata Pasquillini @ MD Anderson

- Immunologic targeting of SSTR2 with CAR-T cells
 -- David Metz et al @ University of Pennsylvania
Targeting the mTOR pathway

![Diagram showing the mTOR pathway and its effects on cancer cell and endothelial cell growth and proliferation.]

Targeting mTOR in PNETs: Ph III Everolimus (RADIANT 3)

- **Advanced pancreatic NETs**
 - n=410
 - Everolimus 10 mg qd
 - N=207
 - Placebo
 - N=203

 Median PFS
 - Everolimus 11.0 mo
 - Placebo 4.6 mo
 - P<0.001

 FDA approved for Pancreatic NET

Yao. NEJM.2011.
Targeting mTOR in non-pancreatic NETs: Ph III Everolimus (RADIANT 2)

Advanced carcinoid
\(\text{n=429} \)

\[\rightarrow \]

R

<table>
<thead>
<tr>
<th>Arm</th>
<th>(\text{n=216})</th>
<th>(\text{n=213})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Everolimus 10 mg + Octreotide LAR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Placebo + Octreotide LAR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PFS by Central Review

Best Percentage Change from Baseline

- Everolimus 16.4 mo
- Placebo 11.3 mo

Recently Completed Trial Targeting mTOR: Phase III RADIANT 4

1° endpoint Progression Free Survival [closed to accrual]

Advanced, progressive, somatostatin receptor positive, GI and lung carcinoid tumours

<table>
<thead>
<tr>
<th>Arm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Everolimus + BSC</td>
<td></td>
</tr>
<tr>
<td>Best Supportive Care</td>
<td></td>
</tr>
</tbody>
</table>
Angiogenesis as a Target

Taking Advantage of Hypervascular Features of NETs
New blood vessels grow due to Receptor Mediated Signaling Pathway

Endothelial Cell

Flk-1/KDR (VEGFR-2)

Growth, Migration, Permeability, Anti-apoptosis

VEGF

Kinase Activation Cascade

VEGF-C, VEGF-D

Bevacizumab
New blood vessels grow due to Receptor Mediated Signaling Pathway

Endothelial Cell

Flk-1/KDR (VEGFR-2)

Growth, Migration, Permeability, Anti-apoptosis

VEGF

Kinase Activation Cascade

Aflibercept

Ramicurumab

Kinase Activation Cascade

Growth, Migration, Permeability, Anti-apoptosis
New blood vessels grow due to Receptor Mediated Signaling Pathway

Endothelial Cell

Kinase Activation Cascade

Growth, Migration, Permeability, Anti-apoptosis

Sunitinib
Sorafenib
Pazopanib
Axitinib, etc

VEGF

VEGF-C
VEGF-D

Barrier

CT Perfusion Scans

Bevacizumab effect on tumor blood flow

CT Perfusion Scans

Yao J, JCO, 2008: 1316.
Bevacizumab effect on tumor blood flow

CT Perfusion Scans

Stanford Cancer Center

Sunitinib vs Placebo in Pancreatic NET

*159 patients:
 • Well-differentiated
 • Progression in past 12 months

Sunitinib 37.5 mg/day orally, continuous daily dosing*

Placebo*

1:1

Primary endpoint: Progression Free Survival

Stanford Cancer Center
Sunitinib: Progression Free Survival

Estimate of median PFS:
- sunitinib: 11.1 months (95% CI: 7.4–NR)
- placebo: 5.5 months (95% CI: 3.5–7.4)
Hazard ratio 0.397 (95% CI: 0.243–0.649)
P<0.001

Carcinoid Trials targeting angiogenesis

Advanced, progressive carcinoids
SWOG Trial (Yao PI)

Bevacizumab + Octreotide LAR

Interferon + Octreotide LAR
Carcinoid Trials targeting angiogenesis

- Advanced, progressive carcinoids
 - Bevacizumab + Octreotide LAR
 - Interferon + Octreotide LAR
 - Closed to accrual

Alliance Trial (Bergsland PI)

Completed Trial Combining Targeted Agents: Everolimus +/- Bevacizumab

- Advanced, progressive pancreatic NETs
 - Everolimus + Octreotide LAR
 - Everolimus + Bevacizumab + Octreotide LAR

CALGB 80701 (Kulke PI): Phase II; 1° endpoint PFS

Sponsor: CALGB
Chemotherapy for NETs

Streptozocin

- Naturally occurring nitrosourea
- Initially identified in 1950’s as an antibiotic
- Found to be “selectively toxic” to beta cells of islets
- Approved by FDA for islet cell tumors in 1976

Streptozocin-based regimens

<table>
<thead>
<tr>
<th>Regimen</th>
<th>*N</th>
<th>Tumor Type</th>
<th>Response **Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>STZ/5-FU vs. STZ/Dox</td>
<td>105</td>
<td>PNET</td>
<td>45% 69%</td>
<td>Moertal et al NEJM ‘92</td>
</tr>
<tr>
<td>***STZ/5-FU/Dox</td>
<td>84</td>
<td>PNET</td>
<td>39%</td>
<td>Kouvaraki et al JCO ‘04</td>
</tr>
<tr>
<td>STZ/Dox vs. Dox/5-FU</td>
<td>176</td>
<td>carcinoid</td>
<td>16% 16%</td>
<td>Sun et al JCO ‘05</td>
</tr>
<tr>
<td>STZ/5-FU vs. Interferon</td>
<td>64</td>
<td>carcinoid</td>
<td>3% 9%</td>
<td>Dahan et al Endocr Rel Ca ‘09</td>
</tr>
</tbody>
</table>

*Studies with > 20 patients
**Response criteria inconsistent
***Retrospective report
DTIC and Temozolomide

- Both are alkylators and share an active metabolite
- DNA adduct repaired by MGMT
 - Data from glioblastoma suggests MGMT deficient tumors predict for better response
- DTIC has single agent activity in NETs
 - PNET 33% response rate (Bukowski et al. Cancer ’94)
 - Carcinoid 8-16% response rate (Sun et al. JCO ’05)
- Temozolomide with better blood brain barrier penetration and greater convenience

Role of MGMT in Temozolomide Resistance

MGMT expression and response to *Temozolomide in NETs*

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Tumor type</th>
<th>Radiologic Response (RECIST)</th>
<th>Biochemical Response (CGA)</th>
<th>Median PFS (months)</th>
<th>Median Survival (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGMT +</td>
<td>16</td>
<td>3 pancreas 13 carcinoid</td>
<td>0/16</td>
<td>0/10</td>
<td>9.25</td>
<td>14</td>
</tr>
<tr>
<td>MGMT -</td>
<td>5</td>
<td>All pancreas</td>
<td>4/5**</td>
<td>4/5</td>
<td>19</td>
<td>Not reached</td>
</tr>
</tbody>
</table>

MGMT intact tumor
MGMT deficient tumor

Temozolomide was given in combination with either thalidomide or bevacizumab in separate phase II trial
p<0.05

Temozolomide-based Regimens

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Tumor Type</th>
<th>Response Rate</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMZ</td>
<td>36</td>
<td>PNET Carcinoid</td>
<td>8% 30%</td>
<td>Ekeblad et al Clin Cancer Res ’07</td>
</tr>
<tr>
<td>TMZ + Thalidomide</td>
<td>29</td>
<td>PNET Carcinoid</td>
<td>45% 7%</td>
<td>Kulke et al JCO ’06</td>
</tr>
<tr>
<td>TMZ+Bev</td>
<td>34</td>
<td>PNET Carcinoid</td>
<td>24% 0%</td>
<td>Kulke, et al Clin Cancer Res ’09</td>
</tr>
<tr>
<td>TMZ + Capecitabine</td>
<td>33</td>
<td>PNET</td>
<td>67%</td>
<td>Strosberg, et al Cancer ’10</td>
</tr>
</tbody>
</table>

Variety of dosing regimens used
**4 of 13 bronchial carcinoids responded (one was atypical); 3 of the 4 responding patients were deficient in MGMT*
Temozolomide-Based Therapy in Pancreatic NET

<table>
<thead>
<tr>
<th>Regimen</th>
<th>N</th>
<th>RR</th>
<th>TTP/PFS (mo.)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrospective Series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tem</td>
<td>12</td>
<td>8%</td>
<td>NR</td>
<td>Ekeblad, Clin Cancer Res, 2007</td>
</tr>
<tr>
<td>Tem/Capecitabine</td>
<td>30</td>
<td>70%</td>
<td>18</td>
<td>Strosberg, Cancer, 2011</td>
</tr>
<tr>
<td>Tem (various regimens)</td>
<td>53</td>
<td>34%</td>
<td>13.6</td>
<td>Kulke, Clin Cancer Res, 2009</td>
</tr>
<tr>
<td>Prospective Trials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tem/Thalidomide</td>
<td>11</td>
<td>45%</td>
<td>NR</td>
<td>Kulke, JCO, 2006</td>
</tr>
<tr>
<td>Tem/Bevacizumab</td>
<td>15</td>
<td>33%</td>
<td>14.3</td>
<td>Chan, JCO, 2012</td>
</tr>
<tr>
<td>Tem/Everolimus</td>
<td>40</td>
<td>40%</td>
<td>15.4</td>
<td>Chan, Cancer, 2013</td>
</tr>
<tr>
<td>Tem/Capecitabine</td>
<td>11</td>
<td>36%</td>
<td>>20</td>
<td>Fine, ASCO GI, 2014</td>
</tr>
</tbody>
</table>

*Data shown above limited to panc NET only, although studies may have included both pNET and carcinoid.

Trials in progress: Chemo Combination

ECOG 2211 (Kunz PI): Phase II, 1° endpoint PFS

Low and intermediate grade advanced pancreatic NETs → Temozolomide → Temozolomide / Capecitabine

R

MGMT will be assessed
Conclusions

- Management of NETs has changed over last 10 years
- Somatostatin analogues effective
- PRRT in randomized trial
- mTOR and angiogenesis validated targets
- Chemo can still be effective (predominantly in PNETs)
- First ever adjuvant trial open for resected liver mets